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This tutorial gives a basic introduction to use of the MaxEnt program for maximum entropy  modelling 
of species’ geographic distributions, written by Steven Phillips, Miro Dudik and Rob Schapire, with 
support from AT&T Labs-Research, Princeton University, and the Center for Biodiversity and 
Conservation, American Museum of Natural History.  For more details on the theory behind maximum 
entropy modeling as well as a description of the data used and the main types of statistical analysis used 
here, see:

    Steven J. Phillips, Robert P. Anderson and Robert E. Schapire, Maximum entropy modeling of 
species geographic distributions.  Ecological Modelling, Vol 190/3-4 pp 231-259, 2006.

Two additional papers describing more recently-added features of the Maxent software are:

    Steven J. Phillips and Miroslav Dudik, Modeling of species distributions with Maxent: new 
extensions and a comprehensive evaluation.  Ecography, Vol 31, pp 161-175, 2008.

    Steven J. Phillips et al. Opening the black box: an open-source release of Maxent. Ecography, In 
press, 2017.

The environmental data we will use consist of climatic and elevational data for South America, together 
with a potential vegetation layer.  Our sample species will be Bradypus variegatus, the brown-throated 
three-toed sloth. These data derive from the 2001 Anderson & Handley taxonomic revision 
(http://biostor.org/reference/84876) and were used in the Phillips et al. 2006 paper. This tutorial will 
assume that all the data files are located in the same directory as the maxent program files; otherwise 
you will need to use the path (e.g., c:\data\maxent\tutorial) in front of the file names used here.

If you would like to reference this tutorial in a publication, report, or online post, an appropriate citation 
is:

Phillips, S. J. 2017. A Brief Tutorial on Maxent. Available from url: 
http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on XXXX-XX-XX.

http://biostor.org/reference/84876


Getting started

Downloading

The software consists of a jar file, maxent.jar, which can be used on any computer running Java version 
1.4 or later.  Maxent can be downloaded, along with associated literature, from 
http://biodiversityinformatics.amnh.org/open_source/maxent/; the Java runtime environment can be obtained 
from java.sun.com/javase/downloads.  If you are using Microsoft Windows (as we assume here), you 
should also download the file maxent.bat, and save it in the same directory as maxent.jar.  The website 
has a file called “readme.txt”, which contains instructions for installing the program on your computer.

http://java.sun.com/javase/downloads
http://biodiversityinformatics.amnh.org/open_source/maxent/


Firing up

If you are using Microsoft Windows, simply click on the file maxent.bat.  Otherwise, enter "java 
-mx512m -jar maxent.jar" in a command shell (where "512" can be replaced by the megabytes of 
memory you want made available to the program).  The following screen will appear:

To perform a run, you need to supply a file containing presence localities (“samples”), a directory 
containing environmental variables, and an output directory.  In our case, the presence localities are in 
the file “samples\bradypus.csv”, the environmental layers are in the directory “layers”, and the outputs 
are going to go in the directory “outputs”.  You can enter these locations by hand, or browse for them.  
While browsing for the environmental variables, remember that you are looking for the directory that 
contains them – you don’t need to browse down to the files in the directory.  After entering or browsing 
for the files for Bradypus, the program looks like this:



The file “samples\bradypus.csv” contains the presence localities in .csv format. The first few lines are as
follows:

species,longitude,latitude
bradypus_variegatus,-65.4,-10.3833
bradypus_variegatus,-65.3833,-10.3833
bradypus_variegatus,-65.1333,-16.8
bradypus_variegatus,-63.6667,-17.45
bradypus_variegatus,-63.85,-17.4

There can be multiple species in the same samples file, in which case more species would appear in the 
panel, along with Bradypus.  Coordinate systems other than latitude and longitude can be used provided 
that the samples file and environmental layers use the same coordinate system.  The “x” coordinate 
(longitude, in our case) should come before the “y” coordinate (latitude) in the samples file.  If the 
presence data has duplicate records (multiple records for the same species in the same grid cell), the 
duplicates are removed by default; this can be changed by clicking on the “Settings” button and 
deselecting “Remove duplicate presence records”.

The directory “layers” contains a number of ascii raster grids (in ESRI’s .asc format), each of which 
describes an environmental variable.  The grids must all have the same geographic bounds and cell 
size (i.e. all the ascii file headings must match each other perfectly).  One of our variables, “ecoreg”, 



is a categorical variable describing potential vegetation classes.  The categories must be indicated by 
numbers, rather than letters or words.  You must tell the program which variables are categorical, as has 
been done in the picture above.

Doing a run

Simply press the “Run” button.  A progress monitor describes the steps being taken.  After the 
environmental layers are loaded and some initialization is done, progress towards training of the maxent 
model is shown like this:

The gain is closely related to deviance, a measure of goodness of fit used in generalized additive and 
generalized linear models.  It starts at 0 and increases towards an asymptote during the run.  During this 
process, Maxent is generating a probability distribution over pixels in the grid, starting from the uniform
distribution and repeatedly improving the fit to the data.  The gain is defined as the average log 
probability of the presence samples, minus a constant that makes the uniform distribution have zero 
gain.  At the end of the run, the gain indicates how closely the model is concentrated around the 
presence samples; for example, if the gain is 2, it means that the average likelihood of the presence 
samples is exp(2) ≈ 7.4 times higher than that of a random background pixel.  Note that Maxent isn’t 
directly calculating “probability of occurrence”.  The probability it assigns to each pixel is typically very
small, as the values must sum to 1 over all the pixels in the grid (though we return to this point when we 
compare output formats). 

The run produces multiple output files, of which the most important for analyzing your model is an html
file called “bradypus.html”.  Part of this file gives pointers to the other outputs, like this:



Looking at a prediction

To see what other (more interesting) output there can be in bradpus.html, we will turn on a couple of 
options and rerun the model.  Press the “Make pictures of predictions” button, then click on “Settings”, 
and type “25” in the “Random test percentage” entry.  Then, press the “Run” button again.  After the run
completes, the file bradypus.html contains a picture like this:



The image uses colors to indicate predicted probability that conditions are suitable, with red indicating 
high probability of suitable conditions for the species, green indicating conditions typical of those where
the species is found, and lighter shades of blue indicating low predicted probability of suitable 
conditions.  For Bradypus, we see that suitable conditions are predicted to be highly probable through 
most of lowland Central America, wet lowland areas of northwestern South America, the Amazon basin,



Caribean islands, and much of the Atlantic forests in south-eastern Brazil. The file pointed to is an 
image file (.png) that you can just click on (in Windows) or open in most image processing software. If 
you want to copy these images, or want to open them with other software, you will find the .png files in 
the directory called “plots” that has been created as an output during the run.  

The test points are a random sample taken from the species presence localities.  The same random 
sample is used each time you run Maxent on the same data set, unless you select the “random seed” 
option on the settings panel.  Alternatively, test data for one or more species can be provided in a 
separate file, by giving the name of a “Test sample file” in the Settings panel.  

Output formats

Maxent supports four output formats for model values: raw, cumulative,  logistic and cloglog.  First, the 
raw output is just the Maxent exponential model itself.  Second, the cumulative value corresponding to a
raw value of r is the percentage of the Maxent distribution with raw value at most r.  Cumulative output 
is best interpreted in terms of predicted omission rate: if we set a cumulative threshold of c, the resulting
binary prediction would have omission rate c% on samples drawn from the Maxent distribution itself, 
and we can predict a similar omission rate for samples drawn from the species distribution.  Third, if c is
the exponential of the entropy of the maxent distribution, then the logistic value corresponding to a raw 
value of r is c·r/(1+c·r).  This is a logistic function, because the raw value is an exponential function of 
the environmental variables.  The cloglog value corresponding to a raw value of r is 1-exp(-c·r).  The 
four output formats are all monotonically related, but they are scaled differently, and have different 
interpretations.  The default output is cloglog, which is the easiest to conceptualize: it gives an estimate 
between 0 and 1 of probability of presence.  Note that probability of presence depends strongly on 
details of the sampling design, such as the quadrat size and (for vagile organisms) observation time; 
cloglog output estimates probability of presence assuming that the sampling design is such that typical 
presence localities have an expected abundance of one individual per quadrat, which results in a 
probability of presence of about 0.63.  The picture of the Bradypus model above uses the logistic format,
which is very similar to cloglog output, but based on a different theoretical justification.  In comparison, 
using the raw format gives the following picture:



Note that we have used a logarithmic scale for the colors.  A linear scale would be mostly blue, with a 
few red pixels (you can verify this by deselecting “Logscale pictures” on the Settings panel) since the 
raw format typically gives a small number of sites relatively large values – this can be thought of as an 
artifact of the raw output being given by an exponential distribution.



Using the cumulative output format gives the following picture:

As with the raw output, we have used a logarithmic scale for coloring the picture in order to emphasize 
differences between smaller values. Cumulative output can be interpreted as predicting suitable 
conditions for the species above a threshold in the approximate range of 1-20 (or yellow through orange,
in this picture), depending on the level of predicted omission that is acceptable for the application.  



Statistical analysis

The “25” we entered for “random test percentage” told the program to randomly set aside 25% of the 
sample records for testing.  This allows the program to do some simple statistical analysis.  Much of the 
analysis used the use of a threshold to make a binary prediction, with suitable conditions predicted 
above the threshold and unsuitable below.  The first plot shows how testing and training omission and 
predicted area vary with the choice of cumulative threshold, as in the following graph:

Here we see that the omission on test samples is a very good match to the predicted omission rate, the 
omission rate for test data drawn from the Maxent distribution itself.  The predicted omission rate is a 
straight line, by definition of the cumulative output format.   In some situations, the test omission line 
lies well below the predicted omission line: a common reason is that the test and training data are not 
independent, for example if they derive from the same spatially autocorrelated presence data.

The next plot gives the receiver operating curve for both training and test data, shown below.  The area 
under the ROC curve (AUC) is also given here; if test data are available, the standard error of the AUC 
on the test data is given later on in the web page.



If you use the same data for training and for testing then the red and blue lines will be identical. If you 
split your data into two partitions, one for training and one for testing it is normal for the red (training) 
line to show a higher AUC than the blue (testing) line. The red (training) line shows the “fit” of the 
model to the training data. The blue (testing) line indicates the fit of the model to the testing data, and is 
the real test of the models predictive power. The turquoise line shows the line that you would expect if 
your model was no better than random. If the blue line (the test line) falls below the turquoise line then 
this indicates that your model performs worse than a random model would. The further towards the top 
left of the graph that the blue line is, the better the model is at predicting the presences contained in the 
test sample of the data. For more detailed information on the AUC statistic a good starting reference is: 
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in 
conservation presence/ absence models. Environmental Conservation 24(1): 38-49.  Because we have 
only occurrence data and no absence data, “fractional predicted area” (the fraction of the total study area
predicted present) is used instead of the more standard commission rate (fraction of absences predicted 
present).  For more discussion of this choice, see the paper in Ecological Modelling mentioned on Page 
1 of this tutorial.  It is important to note that AUC values tend to be higher for species with narrow 
ranges, relative to the study area described by the environmental data.  This does not necessarily mean 
that the models are better; instead this behavior is an artifact of the AUC statistic.

If test data are available, the program automatically calculates the statistical significance of the 
prediction, using a binomial test of omission.  For Bradypus, this gives:



For more detailed information on the binomial statistic, see the Ecological Modelling paper mentioned 
above.

Which variables matter most?

A natural application of species distribution modeling is to answer the question, which variables matter 
most for the species being modeled?  There is more than one way to answer this question; here we 
outline the possible ways in which Maxent can be used to address it.  

While the Maxent model is being trained, we can keep track of which environmental variables are 
contributing to fitting the model.  Each step of the Maxent algorithm increases the gain of the model by 
modifying the coefficient for a single feature; the program assigns the increase in the gain to the 



environmental variable(s) that the feature depends on.  Converting to percentages at the end of the 
training process, we get the following table:

These percent contribution values are only heuristically defined: they depend on the particular path that 
the Maxent code uses to get to the optimal solution, and a different algorithm could get to the same 
solution via a different path, resulting in different percent contribution values.  In addition, when there 
are highly correlated environmental variables, the percent contributions should be interpreted with 
caution.  In our Bradypus example, annual precipitation is highly correlated with October and July 
precipitation.  Although the above table shows that Maxent used the October precipitation variable more
than any other, and hardly used annual precipitation at all, this does not necessarily imply that October 
precipitation is far more important to the species than annual precipitation.

The right-hand column in the table shows a second measure of variable contributions, called 
permutation importance. This measure depends only on the final Maxent model, not the path used to 
obtain it. The contribution for each variable is determined by randomly permuting the values of that 
variable among the training points (both presence and background) and measuring the resulting decrease
in training AUC. A large decrease indicates that the model depends heavily on that variable. Values are 
normalized to give percentages.



To get alternate estimates of which variables are most important in the model, we can also run a 
jackknife test by selecting the “Do jackknife to measure variable important” checkbox.  When we press 
the “Run” button again, a number of models are created.  Each variable is excluded in turn, and a model 
created with the remaining variables.  Then a model is created using each variable in isolation.  In 
addition, a model is created using all variables, as before.  The results of the jackknife appear in the 
“bradypus.html” files in three bar charts, and the first of these is shown below.

We see that if Maxent uses only pre6190_l1 (average January rainfall) it achieves almost no gain, so that
variable is not (by itself) useful for estimating the distribution of Bradypus.  On the other hand, October 
rainfall (pre6190_l10) allows a reasonably good fit to the training data.  Turning to the lighter blue bars, 
it appears that no variable contains a substantial amount of useful information that is not already 
contained in the other variables, because omitting each variable in turn did not decrease the training gain
considerably.

The bradypus.html file has two more jackknife plots, which use either test gain or AUC in place of 
training gain, shown below.



Comparing the three jackknife plots can be very informative.  The AUC plot shows that annual 
precipitation (pre6190_ann) is the most effective single variable for predicting the distribution of the 
occurrence data that was set aside for testing, when predictive performance is measured using AUC, 
even though it was hardly used by the model built using all variables.  The relative importance of annual
precipitation also increases in the test gain plot, when compared against the training gain plot.  In 



addition, in the test gain and AUC plots, some of the light blue bars (especially for the monthly 
precipitation variables) are longer than the red bar, showing that predictive performance improves when 
the corresponding variables are not used. 

This tells us that monthly precipitation variables are helping Maxent to obtain a good fit to the training 
data, but the annual precipitation variable generalizes better, giving comparatively better results on the 
set-aside test data.  Phrased differently, models made with the monthly precipitation variables appear to 
be less transferable.  This is important if our goal is to transfer the model, for example by applying the 
model to future climate variables in order to estimate its future distribution under climate change.  It 
makes sense that monthly precipitation values are less transferable: likely suitable conditions for 
Bradypus will depend not on precise rainfall values in selected months, but on the aggregate average 
rainfall, and perhaps on rainfall consistency or lack of extended dry periods.  When we are modeling on 
a continental scale, there will probably be shifts in the precise timing of seasonal rainfall patterns, 
affecting the monthly precipitation but not suitable conditions for Bradypus.  

In general, it would be better to use variables that are more likely to be directly relevant to the species 
being modeled.  For example, the Worldclim website (www.worldclim.org) provides “BIOCLIM” 
variables, including derived variables such as “rainfall in the wettest quarter”, rather than monthly 
values.

A last note on the jackknife outputs: the test gain plot shows that a model made only with January 
precipitation (pre6190_l1)  results in a negative test gain.  This means that the model is slightly worse 
than a null model (i.e., a uniform distribution) for predicting the distribution of occurrences set aside for 
testing.  This can be regarded as more evidence that the monthly precipitation values are not the best 
choice for predictor variables.



How does the prediction depend on the variables?

Now press the “Create response curves”, deselect the jackknife option, and rerun the model.   This 
results in the following section being added to the “bradypus.html” file:

Each of the thumbnail images can be selected (by clicking on them) to obtain a more detailed plot, and if
you would like to copy or open these plots with other software, the .png files can be found in the “plots” 
directory.  Looking at vap6190_ann, we see that the response is low for values of vap6190_ann in the 
range 1-200, and is higher for values in the range 200-300.  The value shown on the y-axis is predicted 
probability of suitable conditions, as given by the logistic output format, with all other variables set to 
their average value over the set of presence localities.



Note that if the environmental variables are correlated, as they are here, the marginal response curves 
can be misleading.  For example, if two closely correlated variables have response curves that are near 
opposites of each other, then for most pixels, the combined effect of the two variables may be small.  As
another example, we see that predicted suitability is negatively correlated with annual precipitation 
(pre6190_ann), if all other variables are held fixed.  In other words, once the effect of all the other 
variables has already been accounted for, the marginal effect of increasing annual precipitation is to 
decrease predicted suitability.  However, annual precipitation is highly correlated with the monthly 
precipitation variables, so in reality we cannot easily hold the monthly values fixed while varying the 
annual value.  The program therefore produces a second set of response curves, in which each curve is 
made by generating a model using only the corresponding variable, disregarding all other variables:

In contrast to the marginal response to annual precipitation in the first set of response curves, we now 
see that predicted suitability generally increases with increasing annual precipitation. 



Feature types and response curves  

Response curves allow us to see the difference among different feature types.  Deselect the “auto 
features”, select “Threshold features”, and press the “Run” button again.  Take a look at the resulting 
feature profiles – you’ll notice that they are all step functions, like this one for pre6190_l10:

If the same run is done using only hinge features, the resulting feature profile looks like this:



The outlines of the two profiles are similar, but they differ because different feature types allow different
possible shapes of response curves.  The exponent in a Maxent model is a sum of features, and a sum of 
threshold features is always a step function, so the logistic output is also a step function (as are the raw 
and cumulative outputs).  In comparison, a sum of hinge features is always a piece-wise linear function, 
so if only hinge features are used, the Maxent exponent is piece-wise linear.  This explains the sequence 
of connected line segments in the second response curve above.  (Note that the lines are slightly curved, 
especially towards the extreme values of the variable; this is because the logistic output applies a 
sigmoid function to the Maxent exponent.)  Using all classes together (the default, given enough 
samples) allows many complex responses to be accurately modeled.  A deeper explanation of the 
various feature types can be found by clicking on the help button.



Interactive exploration of predictions

This interactive tool allows you to investigate how Maxent’s prediction is determined by the predictor 
variables across a study area.  Clicking on a point on the map shows its location in each response curve. 
The top right graph shows how much each variable contributes to the logit of the prediction (pointing at 
a bar on the graph gives the variable name and numerical contribution).  

The tool assumes the model is additive (without interactions between variables), so make sure to run it 
only on the output of a runs without product features.  The tool needs data from the response curves 
created during a Maxent run, so you must select the “Write plot data” option on the Advanced tab for 
Maxent settings before the run. Then use the following command line from a command window (start 
→ run → cmd) to start the tool:

java –cp maxent.jar density.Explain outputs\bradypus_variegatus.asc layers

Depending on the directory that you run the command from, you may need to give the full path to the 
maxent.jar file (e.g., C:\Maxent\maxent.jar), the predictor variables (e.g., C:\maxentTutorial\layers) and 
the Maxent output grid.  Your computer needs enough memory to hold all predictor variables at once.



SWD Format

Another input format can be very useful, especially when your environmental grids are very large.  For 
lack of a better name, it’s called “samples with data”, or just SWD.  The SWD version of our Bradypus 
file, called “bradypus_swd.csv”, starts like this:

species,longitude,latitude,cld6190_ann,dtr6190_ann,ecoreg,frs6190_ann,h_dem,pre6190_ann,pre6190_l10,pre6190_l1,pre6190_l4,pre6190
_l7,tmn6190_ann,tmp6190_ann,tmx6190_ann,vap6190_ann
bradypus_variegatus,-65.4,-10.3833,76.0,104.0,10.0,2.0,121.0,46.0,41.0,84.0,54.0,3.0,192.0,266.0,337.0,279.0
bradypus_variegatus,-65.3833,-10.3833,76.0,104.0,10.0,2.0,121.0,46.0,40.0,84.0,54.0,3.0,192.0,266.0,337.0,279.0
bradypus_variegatus,-65.1333,-16.8,57.0,114.0,10.0,1.0,211.0,65.0,56.0,129.0,58.0,34.0,140.0,244.0,321.0,221.0
bradypus_variegatus,-63.6667,-17.45,57.0,112.0,10.0,3.0,363.0,36.0,33.0,71.0,27.0,13.0,135.0,229.0,307.0,202.0
bradypus_variegatus,-63.85,-17.4,57.0,113.0,10.0,3.0,303.0,39.0,35.0,77.0,29.0,15.0,134.0,229.0,306.0,202.0

It can be used in place of an ordinary samples file.  The difference is only that the program doesn’t need 
to look in the environmental layers (the ascii files) to obtain values for the variables at the sample points,
instead it reads the values for the environmental variables directly from the table.  The environmental 
layers are thus only used to read the environmental data for the “background” pixels – pixels where the 
species hasn’t necessarily been detected.  In fact, the background pixels can also be specified in a SWD 
format file.  The file “background.csv” contains 10,000 background data points.  The first few look like 
this:

background,-61.775,6.175,60.0,100.0,10.0,0.0,747.0,55.0,24.0,57.0,45.0,81.0,182.0,239.0,300.0,232.0
background,-66.075,5.325,67.0,116.0,10.0,3.0,1038.0,75.0,16.0,68.0,64.0,145.0,181.0,246.0,331.0,234.0
background,-59.875,-26.325,47.0,129.0,9.0,1.0,73.0,31.0,43.0,32.0,43.0,10.0,97.0,218.0,339.0,189.0
background,-68.375,-15.375,58.0,112.0,10.0,44.0,2039.0,33.0,67.0,31.0,30.0,6.0,101.0,181.0,251.0,133.0
background,-68.525,4.775,72.0,95.0,10.0,0.0,65.0,72.0,16.0,65.0,69.0,133.0,218.0,271.0,346.0,289.0

We can run Maxent with “bradypus_swd.csv” as the samples file and “background.csv” (both located in 
the “swd” directory) as the environmental layers file.  Try running it – you’ll notice that it runs much 
faster, because it doesn’t have to load the large environmental grids.  Another advantage is that you can 
associate different records with environmental conditions from different time periods.  For example, two
occurrences recorded 100 years apart from the same grid cell probably reflect considerable variation in 
environmental conditions, but unless you use SWD format, both records would be given the same 
environmental variables values.  The downside is that it can’t make pictures or output grids, because it 
doesn’t have all the environmental data.  The way to get around this is to use a “projection”, described 
below.



Batch running

Sometimes you need to generate multiple models, perhaps with slight variations in the modeling 
parameters or the inputs.  Generation of models can be automated with command-line arguments, 
obviating the need to click and type repetitively at the program interface.  The command line arguments 
can either be given from a command window (a.k.a. shell), or they can be defined in a batch file.  Take a
look at the file “batchExample.bat” (for example, right click on the .bat file inWindows Explorer and 
open it using Notepad).  It contains the following line:

java -mx512m -jar maxent.jar environmentallayers=layers togglelayertype=ecoreg 
samplesfile=samples\bradypus.csv outputdirectory=outputs redoifexists autorun

The effect is to tell the program where to find environmental layers and samples file and where to put 
outputs, to indicate that the ecoreg variable is categorical.  The “autorun” flag tells the program to start 
running immediately, without waiting for the “Run” button to be pushed.  Now try double clicking on 
the file to see what it does.

Many aspects of the Maxent program can be controlled by command-line arguments – press the “Help” 
button to see all the possibilities.   Multiple runs can appear in the same file, and they will simply be run 
one after the other.  You can change the default values of parameters by adding command-line 
arguments to the “maxent.bat” file.  Many of the command-line arguments also have abbreviations, so 
the run described in batchExample.bat could also be initiated using this command:

java -mx512m -jar maxent.jar –e layers –t eco –s samples\bradypus.csv –o outputs –r -a



Replication

The "replicates" option can be used to do multiple runs for the same species.  The most common uses for
this flag are for repeated subsampling and for cross-validation.  Replication can be controlled either 
from the Settings panel, or using command line arguments.  By default, the form of replication used is 
cross-validation, where the occurrence data is randomly split into a number of equal-size groups called 
“folds”, and models are created leaving out each fold in turn.  The left-out folds are then used for 
evaluation.  Cross-validation has one big advantage over using a single training/test split:   it uses all of 
the data for validation, thus making better use of small data sets.  As an example, doing a run with the 
number of replicates set to 10 creates 10 html pages, plus a page that summarizes statistical information 
for the cross-validation.  For example, we get ROC curves with error bars and average AUC across 
models, and summary response curves with one standard deviation error bars.  For Bradypus, the cross-
validated ROC curve shows some variability between models:

The single-variable response of Bradypus to annual precipitation shows little variation (on the left, 
below), while the marginal response to annual precipitation is more variable (below, right).  



          

Two alternative forms of replication are supported: repeated subsampling, in which the presence points 
are repeatedly split into random training and testing subsets, and bootstrapping, where the training data 
is selected by sampling with replacement from the presence points, with the number of samples equaling
the total number of presence points.  With bootstrapping, the number of presence points in each set 
equals the total number of presence points, so the training data sets will have duplicate records.

With all three forms of replication, you may want to avoid eating up disk space by turning off the “write 
output grids” option, which will suppress writing of output grids for the replicate runs, so that you only 
get the summary statistics grids (avg, stderr etc.).



Regularization.  

The “regularization multiplier” parameter on the settings panel affects how focused or closely-fitted the 
output distribution is – a smaller value than the default of 1.0 will result in a more localized output 
distribution that is a closer fit to the given presence records, but can result in to overfitting (fitting so 
close to the training data that the model doesn’t generalize well to independent test data).  A larger 
regularization multiplier will give a more spread out, less localized prediction.  Try changing the 
multiplier, and examine the pictures produced and changes in the AUC.  As an example, setting the 
multiplier to 3 makes the following picture, showing a much more diffuse distribution than before:

The potential for overfitting increases as the model complexity increases.  First try setting the multiplier 
very small (e.g. 0.01) with the default set of features to see a highly overfit model.  Then try the same 
regularization multiplier with only linear and quadratic features.



Projecting

A model trained on one set of environmental layers (or SWD file) can be “projected” by applying it to 
another set of environmental layers (or SWD file).  Situations where projections are needed include 
modeling species distributions under changing climate conditions, applying a model of the native 
distribution of an invasive species to assess invasive risk in a different geographic area, or simply 
evaluating the model at a set of test locations in order to do further statistical analysis.  Here we’re going
to use projection for a simplistic climate change prediction, and to give a taste of the difficulties 
involved in making reliable predictions of distributions under climate change.  

The directory “hotlayers” has the same environmental data as the “layers” directory, with two changes: 
the annual average temperature variable (tmp6190_ann.asc) has all values increased by 30, representing 
a uniform 3 degree Celsius increase, while the maximum temperature variable (tmx6190_ann.asc) has 
all values increased by 40, representing a 4 degree Celsius increase.  These changes represent a very 
simplified estimate of future climate, with higher average temperature and higher temperature 
variability, but with no change in precipitation.  To apply a model of Bradypus to this new climate, enter
the samples file and current environmental data as before, using either grids or SWD format, and enter 
the “hotlayers” directory in the “Projection Layers Directory”, as pictured below.  



The projection layers directory (or SWD file) must contain variables with the same names as the 
variables used for training the model, but describing a different conditions (e.g., a different geographic 
region or different climatic model).  For both the training and projection data, each variable name is 
either the column title (if using an SWD format file) or the filename without the .asc file ending (if using
a directory of grids).

When you press “Run”, a model is trained on the environmental variables corresponding to current 
climate conditions, and then projected onto the ascii grids in the “hotlayers” directory.  The output ascii 
grid is called “bradypus_variegatus_hotlayers.asc”, and in general, the projection directory name is 
appended to the species name, in order to distinguish it from the standard (un-projected) output.  If 
“make pictures of predictions” is selected, a picture of the projected model will appear in the 
“bradypus.html” file.  In our case, this produces the following picture:



We see that the predicted probability of presence is drastically lower under the warmer climate.  The 
prediction is of course dependent on the parameters of the model we’re projecting.  If we use only hinge 
and categorical features, rather than the default set of features, the projected distribution is more 
substantial:

Two different models that look very similar in the area used for training may look very different when 
projected to a new geographic area or new climate conditions.  This is especially true if there are 



correlated variables that allow a variety of ways to fit similar-looking models, since the correlations 
between the variables may change in the area you’re projecting to.  
Is the predicted range reduction of Bradypus under climate change reasonable?  If we look at the 
marginal response curves for the model made with default features, we see that the maximum 
temperature is exerting a much stronger influence on the prediction:

Looking at a histogram of maximum temperature values at the known occurrences for Bradypus, we see 
that most occurrences (about 80%) have maximum temperature between 30 and 34 degrees Celsius.  
Only a single occurrence is above 34 degrees, even though a significant fraction of the background is 
between 34 and 35 degrees.

Under our climate change prediction, all 80% of the Bradypus locations currently above 30 degrees will 
have the maximum temperature increase to above 34 degrees.  Therefore it may indeed be reasonable to 
predict that such locations will not be suitable for Bradypus, so Bradypus might not survive in most of 
its current range.  Note that it is difficult to make any conclusions about why such conditions are not 
suitable:  it may be that Bradypus is intolerant to heat, or it may be that higher maximum temperatures 
would allow fire to cause widespread replacement of rainforest by fire-tolerant tree species, eliminating 
most suitable habitat for Bradypus.  To further investigate the prospects of Bradypus under climate 
change, we could do physiological studies to investigate the species’ tolerance for heat, or study the fire 
ecology of rainforest boundaries in the region.



Note:  histograms like the two above are useful tools for investigating your data.  They were made in R 
using the following commands:
swdPresence <- read.csv("swd/bradypus_swd.csv")
hist(swdPresence$tmx6190_ann, probability=TRUE, breaks=c(5:37*10), xlab="Annual maximum temp
* 10", main="Bradypus presence points")
swdBackground <- read.csv("swd/background.csv")
hist(swdBackground$tmx6190_ann, probability=TRUE, breaks=c(5:37*10), xlab="Annual maximum 
temp * 10", main="Background points")

We can see from the histograms that Bradypus can occasionally tolerate high temperatures, as evidenced
by the single record with maximum temperature of 35 degrees.  On the other had, there are extremely 
few points in the background with temperatures of 36 or above, so we have no evidence of whether or 
not Bradypus can tolerate even higher temperatures, which will be widespread under the future climate 
prediction.  This is known as the problem of novel climate conditions: when projecting, the predictor 
variables may take on values outside the range seen during model training.  The primary way Maxent 
deals with this problem is “clamping”, which treats variables outside the training range as if they were at
the limit of the training range.  This effect can be seen in the response curves described above, as the 
response is held constant outside the training range.  Whenever a model is projected, Maxent makes a 
picture that shows where clamping has had a large effect.  Projecting the Bradypus model made with all 
features gives this clamping picture, where the values depicted are the absolute difference between 
predictions with and without clamping.



Clamping has clearly had little effect in this case – in particular, the response curve for maximum 
temperature above shows that the prediction had already leveled off near zero at the hot end of the scale,
so clamping has little effect.

We can also compare the environmental variables used for projection to those used for training the 
model.  Running the following batch command:

java -mx512m -cp maxent.jar density.tools.Novel layers hotlayers novel.asc

makes the following two pictures:



 

The leftmost picture shows how novel each point is in the hotlayers climate conditions.  Negative values
(shown in red) indicate novel climate, i.e., hotlayers values outside the range in layers – the value shown
is the minimum over predictor variables of how far out of range the point is, expressed as a fraction of 
the range of that variable’s values in layers.  Positive values (shown in blue) are similar to BIOCLIM 
values, with a score of 100 meaning that a point is not at all novel, in the sense that its hotlayers values 
are all exactly equal to the median value in layers.  The picture on the right shows which variable is 
most novel at each point, and it shows that novel climate conditions in hotlayers are due to average 
temperature (brown, mostly north of the Amazon River) or maximum temperature (teal blue, mostly 
south of the Amazan River).  



Additional command-line tools

The Maxent jar file contains a number of tools that can be accessed from the command line.  For 
Microsoft users: the features described here can be used in a batch file, like maxent.bat.  As an 
alternative,  Start->run->cmd gets you a shell for running commands interactively; cygwin (available 
free online) is a good alternative with a much more powerful shell that offers many unix utilities.

Quick visualization of grid file

Grid files in .asc, .grd and .mxe format, and some files in .bil format, can be viewed using the following 
command:

   java -mx512m -cp maxent.jar density.Show filename

As with all the commands described below, you may need to add the path to the maxent.jar file and/or 
the file you want to view.  For example, you might use:

   java -mx1000m -cp C:\maxentfiles\maxent.jar density.Show C:\mydata\var1.asc

Show can take some optional arguments (immediately after density.Show):
  -s sampleFile   gives a file with presences to be shown in white dots
  -S speciesname   says which species in the sampleFile to show with dots
  -r radius   controls the size of the white and purple dots for occurrence records
  -L   removes the legend
  -o   writes the picture to a file in .png format

With a little Windows wizardry, you can make Show be invoked just by clicking on .asc, .grd or .mxe 
files.  Make a batch file, say called showFile.bat, with the following single line in it:

   java -mx512m -cp "c:\maxentfiles\maxent.jar" density.Show %1

then associate files of type .asc, .grd or .mxe with the batch file: from a windows explorer (a.k.a. "My 
Computer"), Tools->Folder Options->File Types...  You may need to make the batch file executable: 
right click on it and follow directions.

Making an SWD file

To make an SWD-format file from a non-SWD file:

   java -cp maxent.jar density.Getval samplesfile grid1 grid2 ...

where samplesfile is .csv file of occurrence data and grid1, grid2, etc. are grids in .asc, .mxe, .grd or .bil 
format.  The output is written to "standard output", which means it appears in the command window.  To
write the output to a file, use a "redirect":

   java -cp maxent.jar density.Getval samplesfile grid1 grid2 ... > outfile



If all the grids are in a directory you can avoid having to list them all by name by using a "wildcard":

   java -cp maxent.jar density.Getval samplesfile directory/*.asc ... > outfile

because the wildcard (*) gets expanded to a list of all files that match.

Making an SWD background file

To pick a collection of background points uniformly at random from your study area:

   java -cp maxent.jar density.tools.RandomSample num grid1 grid2 ...

where "num" is the number of background points desired.

Calculating AUC

The following command:

   java -cp maxent.jar density.AUC testpointfile predictionfile

will calculate a presence-background AUC, where the presence points are given in the testpointfile and 
background points are drawn randomly from the predictionfile.  The testpointfile is a .csv file (which 
may optionally be swd format), while the predictionfile is a grid file, typically representing the output of
a species distribution model.

Projection

This tool allows you to apply a previously-calculated Maxent model to a new set of environmental data:

   java -cp maxent.jar density.Project lambdaFile gridDir outFile [args]

Here lambdaFile is a .lambdas file describing a Maxent model, and gridDir is a directory containing 
grids for all the predictor variables described in the .lambdas file.  As an alternative, gridDir could be an 
swd format file.  The optional args can contain any flags understood by Maxent -- for example, a "grd" 
flag would make the output grid of density.Project be in .grd format.

File conversion

To convert a directory full of grids in one format to another:

   java -cp maxent.jar density.Convert indir insuffix outdir outsuffix

where indir and outdir are directories and insuffix and outsuffix are one of asc, mxe, grd or bil.  



Analyzing Maxent output in R

Maxent produces a number of output files for each run.  Some of these files can be imported into other 
programs if you want to do your own analysis of the predictions.  Here we demonstrate the use of the 
free statistical package R on Maxent outputs: this section is intended for users who have experience with
R.  We will use the following two files produced by Maxent: 

   bradypus_variegatus_backgroundPredictions.csv
   bradypus_variegatus_samplePredictions.csv

The first file is only produced when the “writebackgroundpredictions” option is turned on, either by 
using a command-line flag or by selecting it from Maxent’s settings panel. The second file is always 
produced.  Make sure you have test data (for example, by setting the random test percentage to 25); we 
will be evaluating the Maxent outputs using the same test data Maxent used.  First we start R, and install
some packages (assuming this is the first time we’re using them) and then load them by typing (or 
pasting):

   install.packages("ROCR", dependencies=TRUE)
   install.packages("vcd",  dependencies=TRUE)
   library(ROCR)
   library(vcd)
   library(boot)

Throughout this section we will use blue text to show R code and commands and green to show R 
outputs.  Next we change directory to where the Maxent outputs are, for example:

  setwd("c:/maxent/tutorial/outputs")

and then read in the Maxent predictions at the presence and background points, and extract the columns 
we need:

   presence <- read.csv("bradypus_variegatus_samplePredictions.csv")
   background <- read.csv("bradypus_variegatus_backgroundPredictions.csv")
   pp <- presence$Logistic.prediction                # get the column of predictions
   testpp <- pp[presence$Test.or.train=="test"]       # select only test points
   trainpp <- pp[presence$Test.or.train=="train"]   # select only test points
   bb <- background$logistic

Now we can put the prediction values into the format required by ROCR, the package we will use to do 
some ROC analysis, and generate the ROC curve:

   combined <- c(testpp, bb)                                    # combine into a single vector
   label <- c(rep(1,length(testpp)),rep(0,length(bb)))  # labels: 1=present, 0=random
   pred <- prediction(combined, label)                    # labeled predictions
   perf <- performance(pred, "tpr", "fpr")               # True / false positives, for ROC curve
   plot(perf, colorize=TRUE)                                  # Show the ROC curve
   performance(pred, "auc")@y.values[[1]]            # Calculate the AUC



The plot command gives the following result:

while the “performance” command gives an AUC value of 0.8677759, consistent with the AUC reported
by Maxent.  Next, as an example of a test available in R but not in Maxent, we will make a bootstrap 
estimate of the standard deviation of the AUC.

   AUC <- function(p,ind) {
     pres <- p[ind]
     combined <- c(pres, bb)
     label <- c(rep(1,length(pres)),rep(0,length(bb)))
     predic <- prediction(combined, label)
     return(performance(predic, "auc")@y.values[[1]])
   }

  b1 <- boot(testpp, AUC, 100)  # do 100 bootstrap AUC calculations
  b1                                             # gives estimates of standard error and bias

This gives the following output:

   ORDINARY NONPARAMETRIC BOOTSTRAP



   Call:
   boot(data = testpp, statistic = AUC, R = 100)

   Bootstrap Statistics :
        original      bias    std. error
t1* 0.8677759 -0.0003724138  0.02972513

and we see that the bootstrap estimate of standard error (0.02972513) is close to the standard error 
computed by Maxent (0.028).  The bootstrap results can also be used to determine confidence intervals 
for the AUC:

   boot.ci(b1)

gives the following four estimates – see the resources section at the end of this tutorial for references 
that define and compare these estimates.

   Intervals : 
   Level      Normal              Basic         
   95%   ( 0.8099,  0.9264 )   ( 0.8104,  0.9291 )  

   Level     Percentile            BCa          
   95%   ( 0.8064,  0.9252 )   ( 0.7786,  0.9191 )  
   
Those familiar with use of the bootstrap will notice that we are bootstrapping only the presence values 
here.  We could also bootstrap the background values, but the results would not change much, given the 
very large number of background values (10000).

As a final example, we will investigate the calculation of binomial and Cohen’s Kappa statistics for 
some example threshold rules.  First, the following R code calculates Kappa for the threshold given by 
the minimum presence prediction:

   confusion <- function(thresh) {
     return(cbind(c(length(testpp[testpp>=thresh]), length(testpp[testpp<thresh])),
                  c(length(bb[bb>=thresh]), length(bb[bb<thresh]))))
   }
   mykappa <- function(thresh) {
     return(Kappa(confusion(thresh)))
   }
   mykappa(min(trainpp))

which gives a value of 0.0072.  If we want to use the threshold that minimizes the sum of sensitivity and
specificity on the test data, we can do the following, using the true positive rate and false positive rate 
values from the “performance” object used above to plot the ROC curve:

   fpr = perf@x.values[[1]]
   tpr = perf@y.values[[1]]
   sum = tpr + (1-fpr)



   index = which.max(sum)
   cutoff = perf@alpha.values[[1]][[index]]
   mykappa(cutoff)

This gives a kappa value of 0.0144.  To determine binomial probabilities for these two threshold values, 
we can do:

   mybinomial <- function(thresh) {
     conf <- confusion(thresh)
     trials <- length(testpp)
     return(binom.test(conf[[1]][[1]], trials, conf[[1,2]] / length(bb), "greater"))
   }
   mybinomial(min(trainpp))
   mybinomial(cutoff)

This gives p-values of 5.979e-09 and 2.397e-11 respectively, which are both slightly larger than the p-
values given by Maxent.  The reason for the difference is that the number of test samples is greater than 
25, the threshold above which Maxent uses a normal approximation to calculate binomial p-values.


